NSIDC Artic Sea Ice News

Syndicate content
Sea ice data updated daily with one-day lag
Updated: 1 hour 55 min ago

Another record, but a somewhat cooler Arctic Ocean

Tue, 2017-04-11 08:21

Arctic sea ice extent for March 2017 was the lowest in the satellite record for the month. The decline in ice extent has been uneven since the seasonal maximum was reached on March 7, 2017, with a modest period of expansion towards the end of the month.

Overview of conditions extent map

Figure 1. Arctic sea ice extent for March 2017 was 14.43 million square kilometers (5.57 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for March 2017 averaged 14.43 million square kilometers (5.57 million square miles), the lowest March extent in the 38-year satellite record. This is only 60,000 square kilometers (23,000 square miles) below March 2015, the previous lowest March extent, and 1.17 million square kilometers (452,000 square miles) below the March 1981 to 2010 long-term average. This month continues the record low conditions seen since October 2016.

Conditions in context timeseries graph

Figure 2a. The graph above shows Arctic sea ice extent as of April 9, 2017, along with daily ice extent data for five previous years. 2017 to 2016 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, 2012 to 2013 in purple, and 2011 to 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

air temperature plot

Figure 2b. The plot shows Arctic air temperature differences at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius for March 2017. Yellows and reds indicate temperatures higher than the 1981 to 2010 average; blues and purples indicate temperatures lower than the 1981 to 2010 average.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

sea level pressure plot

Figure 2c. The plot shows Arctic sea level pressure (in millibars) for March 2017 expressed as departures from average conditions. The dominant feature is a large area of below average pressure covering most of the Arctic Ocean.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

The decline in sea ice extent following the March 2017 seasonal maximum was interrupted by a brief period of expansion from about March 11 to 15, a decline extending through about March 26, then another period of growth through the end of the month into early April. On April 4th, the extent was greater than on the same day in 2016. This type of behavior is not unusual for this time of year when declines in extent in warmer, lower latitudes can be countered by periods of expansion in the still-cold higher latitudes. Shifts in wind patterns also lead to variability. Regions that experienced slight ice advance were at the end of the month in the Barents Sea and in the Bering Sea. Nevertheless, by early April, extent remained below average in the Barents Sea and in the Sea of Okhotsk and the western Bering Sea. Interestingly, ice extended further south than usual in the eastern Bering Sea.

March saw continued warmth over the Arctic Ocean. The warmest conditions for March 2017 as compared to average were over Siberia. While temperatures were still well above average along the Russian coastal seas (6 to 7 degrees Celsius, or 11 to 13 degrees Fahrenheit), those over the northern North Atlantic and the Canadian Arctic Archipelago were near average.

The dominant feature of the sea level pressure field for March 2017 was an area of below average pressure covering most of the Arctic Ocean. Locally, pressures were more than 15 millibars below the 1981 to 2010 average. This pattern points to a continuation of the stormy conditions that prevailed over the past winter and is broadly consistent with the positive phase of the Arctic Oscillation, a large-scale mode of climate variability. When the Arctic Oscillation is in its positive phase, sea level pressure is below average over the Arctic Ocean. The Arctic Oscillation has generally been in a positive phase since December. The unusually high Siberian temperatures for March 2017 are consistent with persistent winds from the south and east along the southern side of the low pressure.

March 2017 compared to previous years trend graph

Figure 3. Monthly March ice extent for 1979 to 2017 shows a decline of 2.74 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of decline for March is 42,700 square kilometers (16,500 square miles) per year, or 2.74 percent per decade.

Report from the field research photo

Figure 4. The team prepares to measure snow thickness over sea ice in Cambridge Bay, Canada on April 5, 2017, during an AltiKa field validation campaign. NSIDC researcher Andrew Barrett is in a red jacket; Julienne Stroeve holds a magna probe.

Credit: Isobel Lawrence
High-resolution image

As of the publication of this post, NSIDC scientists Julienne Stroeve and Andrew Barrett are in Cambridge Bay, Canada on a satellite validation campaign. Efforts focus on ground measurements of snow depth over sea ice, ice thickness, and snow structure in order to validate the joint French/Indian AltiKa Ka band radar altimeter. Coincident aircraft Ka band and LiDAR measurements allow researchers to connect measurements on the ground with those made by the satellite. Air temperatures have ranged from -20 to -5 degrees Celsius (-4 to 23 degrees Fahrenheit), with wind chills from -40 to -20 degrees Celsius (-40 to -4 degrees Fahrenheit). Dr. Stroeve will then join another field campaign operating out of Alert, Canada for further validation of AltiKa and CryoSat2 over the Lincoln Sea.

Arctic sea ice thickness sea ice volume plot

Figure 5. The graph shows sea ice volume from the PIOMAS model/observations for each year from 2010 through March 2017, and the 1979 to 2016 average (black line) and one (dark gray) and two (light gray) standard deviation ranges.

Credit: NSIDC courtesy University of Washington Polar Science Center
High-resolution image

A key early indicator for the upcoming melt season is the thickness of the sea ice. An assessment of available information suggests a fairly thin ice cover, not surprising given the warm temperatures over much of the Arctic Ocean during the winter.

Satellite data from the European Space Agency (ESA) CryoSat-2 radar altimeter, which is processed into sea ice thickness estimates at the University College London’s Center for Polar Observing and Modeling (CPOM) indicates ice along much of the Siberian coast with thicknesses of 1.5 to 2.0 meters (4.9 to 6.6 feet) or less. This is not atypical for seasonal ice; however this band of <2.0 meters of ice covers a much larger region and extends much farther north than it used to—well north of 80 degrees N latitude on the Atlantic side of the Arctic. NASA’s Operation IceBridge has also been collecting data over the past month. That data will not be available for a few weeks; a key focus of some flights has involved collaboration with ESA to collect coincident data with CryoSat-2 to help validate the satellite estimates.

Another way to estimate thickness and total ice volume is with a combination of observations and a model, which is done by the University of Washington Polar Science Center’s University of Washington Polar Science Center’s Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). The model uses observed sea ice concentration fields to constrain the model and estimates thickness and total volume via physical simulations in the model. It shows that sea ice volume has been at record low levels throughout 2017 so far (Figure 5).

Sea ice loss and Atlantic layer heat

For many years, scientists have pondered how much of the sharp decline in summer sea ice extent and volume is due to “top down” forcing—a warmer atmosphere leading to more summer melt and less winter growth, versus “bottom up” forcing, in which ocean heat is brought to bear on the underside of the ice. There is a great deal of heat in the Arctic Ocean from waters that are imported from the Atlantic. As fairly warm and salty Atlantic water enters the Arctic Ocean it dives underneath the relatively fresh Arctic Ocean surface layer. Because the fresh surface layer has a fairly low density, the vertical structure of the Arctic Ocean is very stable. As such, it is hard to mix this Atlantic heat upwards to melt ice or keep it from forming in the first place. However, new work by an international team led by Igor Polyakov of the University of Alaska Fairbanks provides strong evidence that Atlantic layer heat is now playing a prominent role in reducing winter ice formation in the Eurasian Basin, which is manifested as more summer ice loss. According to their analysis, the ice loss due to the influence of Atlantic layer heat is comparable in magnitude to the top down forcing by the atmosphere.

Antarctic ice extent low, but on the rise antarctic timeseries plot

Figure 6. The graph above shows Antarctic sea ice extent as of April 9, 2017, along with daily ice extent data for four previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, and 2013 in purple. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Following the record-low seasonal sea ice minimum, Antarctic sea ice extent has sharply risen, but extent is still far below average, and set daily record low values throughout the month of March. Regionally, sea ice recovered to near average conditions in the Weddell Sea and around much of the coast of East Antarctica. The primary region of below average extent was in the Ross, Amundsen, and Bellingshausen Sea regions, as has been the case throughout the spring and summer. This appears to be related to warmer-than-average sea surface temperatures.

Additional reading

Polyakov, I., A.V. Pnyushkov, M.B. Alkire, I.M. Ashik, T.M. Baumann, E.C. Carmack and 10 others. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, doi:10.1126/science.aai8204.

 

 

Categories: Climate Science News

Arctic sea ice maximum at record low for third straight year

Wed, 2017-03-22 10:00

Arctic sea ice appears to have reached its annual maximum extent on March 7. This is the lowest maximum in the 38-year satellite record. NSIDC will post a detailed analysis of the 2016 to 2017 winter sea ice conditions in our regular monthly post in early April.

Overview of conditions Figure 1. Arctic sea ice extent for March 7, 2017 was 14.42 million square kilometers (5.57 million square miles). The orange line shows the 1981 to 2010 median extent for that day.

Figure 1. Arctic sea ice extent for March 7, 2017 was 14.42 million square kilometers (5.57 million square miles). The orange line shows the 1981 to 2010 median extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

On March 7, 2017, Arctic sea ice likely reached its maximum extent for the year, at 14.42 million square kilometers (5.57 million square miles), the lowest in the 38-year satellite record. This year’s maximum extent is 1.22 million square kilometers (471,000 square miles) below the 1981 to 2010 average maximum of 15.64 million square kilometers (6.04 million square miles) and 97,000 square kilometers (37,000 square miles) below the previous lowest maximum that occurred on February 25, 2015. This year’s maximum is 100,000 square kilometers (39,000 square miles) below the 2016 maximum, which is now third lowest. (In 2016, we reported that year’s maximum as the lowest and 2015 the second lowest. An update to the Sea Ice Index last summer has changed our numbers slightly.)

Conditions in context Figure 2a. The graph above shows Arctic sea ice extent as of March 20, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data.

Figure 2a. The graph above shows Arctic sea ice extent as of March 20, 2017, along with daily ice extent data for five previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, 2012 to 2013 in purple, and 2011 to 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. The plot shows Arctic air temperature differences at the 925 hPa level in degrees Celsius from October 1, 2016 to February 28, 2017. Yellows and reds indicate temperatures higher than the 1981 to 2010 average; blues and purples indicate temperatures lower than the 1981 to 2010 average.

Figure 2b. The plot shows Arctic air temperature differences at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius from October 1, 2016 to February 28, 2017. Yellows and reds indicate temperatures higher than the 1981 to 2010 average; blues and purples indicate temperatures lower than the 1981 to 2010 average.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

It was a very warm autumn and winter. Air temperatures at the 925 hPa level (about 2,500 feet above sea level) over the five months spanning October 2016 through February 2017 were more than 2.5 degrees Celsius (4.5 degrees Fahrenheit) above average over the entire Arctic Ocean, and greater than 5 degrees Celsius (9 degrees Fahrenheit) above average over large parts of the northern Chukchi and Barents Seas. These overall warm conditions were punctuated by a series of extreme heat waves over the Arctic Ocean.

Data from the European Space Agency’s CryoSat-2 satellite indicate that this winter’s ice cover may be only slightly thinner than that observed at this time of year for the past four years. However, an ice-ocean model at the University of Washington (PIOMAS) that incorporates observed weather conditions suggests the volume of ice in the Arctic is unusually low.

The Antarctic minimum Figure 3. Antarctic sea ice extent for March 3, 2017 was 2.11 million square kilometers (813,000 million square miles). The orange line shows the 1981 to 2010 average extent for that day.

Figure 3. Antarctic sea ice extent for March 3, 2017 was 2.11 million square kilometers (815,000 square miles). The orange line shows the 1981 to 2010 median extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

In the Southern Hemisphere, sea ice likely reached its minimum extent for the year on March 3, at 2.11 million square kilometers (815,000 square miles). This year’s minimum extent was the lowest in the satellite record, continuing a period of satellite-era record low daily extents that began in early November. However, the Antarctic system has been highly variable. As recently as 2015, Antarctic sea ice set record high daily extents, and in September 2014 reached a record high winter maximum.

The Antarctic minimum extent is 740,000 square kilometers (286,000 square miles) below the 1981 to 2010 average minimum of 2.85 million square kilometers (1.10 million square miles) and 184,000 square kilometers (71,000 square miles) below the previous lowest minimum that occurred on February 27, 1997.

Antarctic air temperatures during the autumn and winter were above average, but less so than in the Arctic. Air temperatures at the 925 hPa level (about 2,500 feet above sea level) near the sea ice edge have been about 1 to 2.5 degrees Celsius (2 to 4.5 degrees Fahrenheit) above the 1981 to 2010 average.

Final analysis pending

At the beginning of April, NSIDC scientists will release a full analysis of winter conditions, along with monthly data for March. For more information about the maximum extent and what it means, see the NSIDC Icelights post, the Arctic sea ice maximum.

Correction

On March 27, 2017, we made corrections to clarify the second paragraph under Conditions in context. The paragraph originally read:

Data from the European Space Agency’s CryoSat-2 satellite indicate that this winter’s ice cover is slightly thinner compared to the past four years. An ice-ocean model at the University of Washington that incorporates observed weather conditions suggests the volume of ice in the Arctic is unusually low for this time of year.

Categories: Climate Science News

Another warm month in the Arctic

Mon, 2017-03-06 10:00

High air temperatures observed over the Barents and Kara Seas for much of this past winter moderated in February. Overall, the Arctic remained warmer than average and sea ice extent remained at record low levels.

Overview of conditions  National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for February 2017 was 14.28 million square kilometers (5.51 million square miles). The magenta line shows the 1981 to 2010 median extent for the month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for February 2017 averaged 14.28 million square kilometers (5.51 million square miles), the lowest February extent in the 38-year satellite record. This is 40,000 square kilometers (15,400 square miles) below February 2016, the previous lowest extent for the month, and 1.18 million square kilometers (455,600 square miles) below the February 1981 to 2010 long term average.

Ice extent increased at varying rates, with faster growth during the first and third weeks, and slower growth during the second and fourth weeks. Most of the ice growth in February occurred in the Bering Sea, though extent in the Bering remained below average by the end of the month. Sea ice extent in the Sea of Okhotsk substantially decreased mid-month before rebounding to almost typical levels at the end of the month. Overall, however, the ice retreated in this region. Extent in the Barents and Kara Seas remained low through the month as is has all season, with little change in the ice edge location.

Conditions in context  National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of March 5, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

 NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division| High-resolution image

Figure 2b. The plot shows Arctic air temperature differences at the 925 hPa level in degrees Celsius for February 2017. Yellows and reds indicate temperatures higher than the 1981 to 2010 average; blues and purples indicate temperatures lower than the 1981 to 2010 average.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) remained 2 to 5 degrees Celsius (4 to 9 degrees Fahrenheit) above average over the Arctic Ocean. The high air temperatures observed over the Barents and Kara Seas for much of this past winter moderated in February. February air temperatures over the Barents Sea ranged between 4 to 5 degrees Celsius (8 to 9 degrees Fahrenheit) above average, compared to 7 degrees Celsius (13 degrees Fahrenheit) above average in January. Recall that these January temperature extremes were associated with a series of strong cyclones entering the Arctic Ocean from the North Atlantic, drawing in warm air. Sea level pressure in February was nevertheless lower than average over much of the Arctic Ocean. Sea level pressure was higher than average over the Bering Sea and just north of Scandinavia.

February 2017 compared to previous years  National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly February ice extent for 1979 to 2017 shows a decline of 3 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of decline for February is 46,900 square kilometers (18,100 square miles) per year, or 3 percent per decade.

Antarctic minimum extent  National Snow and Ice Data Center|High-resolution image

Figure 4a. The graph above shows Antarctic sea ice extent as of March 5, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

 National Snow and Ice Data Center|High-resolution image

Figure 4b. This graph shows monthly ice extent for February, plotted as a time series of percent differences from the 1981 to 2010 average. The dotted gray line shows the linear trend. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice is nearing its annual minimum extent and continues to track at record low levels for this time of year. On February 13, Antarctic sea ice extent dropped to 2.29 million square kilometers (884,000 square miles), setting a record lowest extent in the satellite era. The previous lowest extent occurred on February 27, 1997. By the end of February, extent had dropped even further to 2.13 million square kilometers (822,400 square miles). The record lows are not surprising, given Antarctic sea ice extent’s high variability. Just a few years back, extent in the region set record highs (Figure 4b).

Sea ice extent was particularly low in the Amundsen Sea, which remained nearly ice-free throughout February. Typically, sea ice in February extends at least a couple hundred kilometers along the entire coastline of the Amundsen. Near-average ice extent persisted in the Weddell Sea and in several sectors along the East Antarctic coast.

Continuity of the sea ice record  Walt Meier, NASA| High-resolution image

Figure 5. This chart shows the lifespans of current and expected future orbiting passive microwave sensors.

Credit: W. Meier, NASA Goddard Space Flight Center Cryospheric Sciences Laboratory
High-resolution image

As noted last year, the sensor that NSIDC had been using for sea ice extent, the Special Sensor Microwave Imager and Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) F17 satellite, started to malfunction. In response, NSIDC switched to the SSMIS on the newer F18 satellite. Later, F17 recovered to normal function, though it recently started to malfunction again.

The DMSP series of sensors have been a stalwart of the sea ice extent time series, providing a continuous record since 1987. Connecting this to data from the earlier Scanning Multichannel Microwave Radiometer (SMMR) results in a continuous record starting in 1979 of high quality and consistency. However, with the issues of F17 and last year’s loss of the newest sensor, F19, grave concerns have arisen about the long-term continuity of the passive microwave sea ice record. Only two DMSP sensors are currently fully capable for sea ice observations: F18 and the older F16; these two sensors have been operating for over 7 and 13 years respectively, well beyond their nominal 5-year lifetimes.

The only other similar sensor currently operating is the Japan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2), which is approaching its 5-year design lifetime in May 2017. NSIDC is now evaluating AMSR2 data for integration into the sea ice data record if needed. Future satellite missions with passive microwave sensors are either planned or proposed by the U.S., JAXA, and ESA, but it is unlikely that a successor to the DMSP series and AMSR2 will be operational before 2022. This presents a growing risk of a gap in the sea ice extent record. Should such a gap occur, NSIDC and NASA would seek to fill the gap as much as possible with other types of sensors (e.g., visible or infrared sensors).

Categories: Climate Science News

2017 ushers in record low extent

Tue, 2017-02-07 12:18

Record low daily Arctic ice extents continued through most of January 2017, a pattern that started last October. Extent during late January remained low in the Kara, Barents and Bering Seas. Southern Hemisphere extent also tracked at record low levels for January; globally, sea ice cover remains at record low levels.

Overview of conditions extent map

Figure 1. Arctic sea ice extent for January 2017 was 13.38 million square kilometers (5.17 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for January 2017 averaged 13.38 million square kilometers (5.17 million square miles), the lowest January extent in the 38-year satellite record. This is 260,000 square kilometers (100,000 square miles) below January 2016, the previous lowest January extent, and 1.26 million square kilometers (487,000 square miles) below the January 1981 to 2010 long-term average.

Ice growth stalled during the second week of the month, and the ice edge retreated within the Kara and Barents Seas, and within the Sea of Okhotsk. After January 16, extent increased at a more rapid pace, but the rate of ice growth was still below average for January as a whole. For a few days towards the end of the month, the extent was slightly greater than recorded in 2006, a year which also saw many record low days in January, but by the 30th it was tracking below 2006. Through most of January the ice edge remained north of the Svalbard Archipelago, largely due to the inflow of warm Atlantic water along the western part of the archipelago. However, by the end of January, some ice was found to the northeast and northwest of Svalbard. At the end of January, ice extent remained well below average within the Kara, Barents, and Bering Seas.

Conditions in context time series graph

Figure 2a. The graph above shows Arctic sea ice extent as of February 5, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 average is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. The plot shows Arctic air temperature difference from average, in degrees Celsius, for January 2017.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

January air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were above average over nearly all of the Arctic Ocean, continuing the pattern that started last autumn (Figure 2b). Air temperatures were more than 5 degrees Celsius (9 degrees Fahrenheit) above the 1981 to 2010 average over the northern Barents Sea and as much as 4 degrees Celsius (7 degrees Fahrenheit) above average in the northern Chukchi and East Siberian Seas. It was also unusually warm over northwestern Canada. Cooler than average conditions (up to 3 degrees Celsius, or 5 degrees Fahrenheit below average) prevailed over the northwest part of Russia and the northeast coast of Greenland.

Atmospheric circulation over the Arctic during the first three weeks of January was characterized by a broad area of below average sea level pressure extending over almost the entire Arctic Ocean. Higher-than-average sea level pressure dominated over the Gulf of Alaska and the North Atlantic Ocean south of Iceland. This set up warm southerly winds from both the northern North Atlantic and the Bering Strait areas, helping to explain the high January air temperatures over the Arctic Ocean. According to the analysis of NASA scientist Richard Cullather, the winter of 2015 to 2016 was the warmest ever recorded in the Arctic in the satellite data record. Whether the winter of 2016 to 2017 will end up warmer remains to be seen; conditions are typically highly variable. For example, during the last week of January, the area of low pressure shifted towards the Siberian side of the Arctic. In the northern Laptev Sea, pressures fell to more than 20 hPa below the 1981 to 2010 average. This was associated with a shift towards cooler conditions over the Arctic Ocean, which may explain why ice extent towards the end of the month rose above levels recorded in 2006.

January 2017 compared to previous years trend graph

Figure 3. Monthly January ice extent for 1979 to 2017 shows a decline of 3.2 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2017, the linear rate of decline for January is 47,400 square kilometers (18,300 square miles) per year, or 3.2 percent per decade.

Amundsen Sea nearly free of ice S_daily_extent_hires

Figure 4. Antarctic sea ice extent for February 5, 2017 shows the Amundsen Sea nearly free of ice. The orange line shows the 1981 to 2010 median extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Extent is tracking at records low levels in the Southern Hemisphere, where it is currently summer. As shown in this plot for February 5, this is primarily due to low ice extent within the Amundsen Sea, where only a few scattered patches of ice remain. By contrast, extent in the Weddell Sea is now only slightly below average. This pattern is consistent with persistent above average air temperatures off western Antarctica.

Further reading

Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki. 2016. Analysis of the warmest Arctic winter, 2015-2016. Geophysical Research Letters,43, doi:10.1002/2016GL071228.

Categories: Climate Science News

Low sea ice extent continues in both poles

Thu, 2017-01-05 13:00

Sea ice in the Arctic and the Antarctic set record low extents every day in December, continuing the pattern that began in November. Warm atmospheric conditions persisted over the Arctic Ocean, notably in the far northern Atlantic and the northern Bering Sea. Air temperatures near the Antarctic sea ice edge were near average. For the year 2016, sea ice extent in both polar regions was at levels well below what is typical of the past several decades.

Overview of conditions Figure 1. Arctic sea ice extent for December 2016 was 12.10 million square kilometers (4.67 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole.

Figure 1. Arctic sea ice extent for December 2016 was 12.10 million square kilometers (4.67 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for December 2016 averaged 12.10 million square kilometers (4.67 million square miles), the second lowest December extent in the satellite record. This is 20,000 square kilometers (7,700 square miles) above December 2010, the lowest December extent, and 1.03 million square kilometers (397,700 square miles) below the December 1981 to 2010 long-term average.

The rate of ice growth for December was 90,000 square kilometers (34,700 square miles) per day. This is faster than the long-term average of 64,100 square kilometers (24,700 square miles) per day. As a result, extent for December was not as far below average as was the case in November. Ice growth for December occurred primarily within the Chukchi Sea, Kara Sea, and Hudson Bay—areas that experienced a late seasonal freeze-up. Compared to the record low for the month set in 2010, sea ice for December 2016 was less extensive in the Kara, Barents, and East Greenland Seas, and more extensive in Baffin and Hudson Bays.

Conditions in context Figure 2a. The graph above shows Arctic sea ice extent as of January 2, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data.

Figure 2a. The graph above shows Arctic sea ice extent as of January 2, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows air temperature difference from average for December 2016. Air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were more than 3 degrees Celsius (5 degrees Fahrenheit) above the 1981 to 2010 average over the central Arctic Ocean and northern Barents Sea, and as much as 5 degrees Celsius (9 degrees Fahrenheit) above average over the Chukchi Sea.

Figure 2b. This plot shows air temperature difference from average for December 2016. Air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were more than 3 degrees Celsius (5 degrees Fahrenheit) above the 1981 to 2010 average over the central Arctic Ocean and northern Barents Sea, and as much as 5 degrees Celsius (9 degrees Fahrenheit) above average over the Chukchi Sea.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

Air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were more than 3 degrees Celsius (5 degrees Fahrenheit) above the 1981 to 2010 average over the central Arctic Ocean and northern Barents Sea, and as much as 5 degrees Celsius (9 degrees Fahrenheit) above average over the Chukchi Sea. Repeated warm air intrusions occurred over the Chukchi and Barents Seas, continuing the pattern seen in November.

In contrast, central Russia and northern British Columbia experienced temperatures 3 to 5 degrees Celsius (5 to 9 degrees Fahrenheit) below average (Figure 2b). Atmospheric circulation over the Arctic in December was characterized by a broad area of lower-than-average pressure over Greenland and the North Pole, extending across the Arctic Ocean to eastern Siberia, and another region of low pressure over the Ural Mountains. Higher-than-average pressure dominated Europe and the Gulf of Alaska. This set up the very warm southerly winds from both the northern North Atlantic and the Bering Strait areas, pushing Arctic air temperatures to unusually high levels for brief periods in early December and near Christmas.

December 2016 compared to previous years Figure 3. Monthly December ice extent for 1979 to 2016 shows a decline of 3.4 percent per decade.

Figure 3. Monthly December ice extent for 1979 to 2016 shows a decline of 3.4 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2016, the linear rate of decline for December is 44,500 square kilometers (17,200 square miles) per year, or 3.4 percent per decade.

While daily extents for December 2016 were at record lows, based on the method employed by NSIDC, the monthly average extent for December 2016 was slightly higher than that recorded for December 2010, the record low December in the satellite record. The monthly average extent for the month of December is higher than the month’s average of daily extents because of the way in which the Sea Ice Index algorithm calculates the monthly extent. The algorithm calculates the monthly average total extent from the monthly average gridded concentration field. Thus, when sea ice is retreating or advancing at a high rate over the course of the month, as was the case for December 2016, the Sea Ice Index monthly average can yield a larger extent than from simply averaging daily extent values. See the Sea Ice Index documentation for further information.

2016 year in review Figure 4. Arctic temperatures at the 925 hPa level (about 2,500 feet above sea level) over the period January to December of 2016 were above average over nearly the entire Arctic region and especially over the Arctic Ocean. By contrast, air temperatures over the Antarctic region for the same period were above average in some areas, such as the Antarctic Peninsula and near the pole, but below average in others.

Figure 4. Arctic temperatures at the 925 hPa level (about 2,500 feet above sea level) over the period January to December of 2016 were above average over nearly the entire Arctic region and especially over the Arctic Ocean. By contrast, air temperatures over the Antarctic region for the same period were above average in some areas, such as the Antarctic Peninsula and near the pole, but below average in others.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

Average annual sea ice extent in both polar regions was low in 2016. Throughout the year, a wave of new record lows were set for both daily and monthly extent. Record low monthly extents were set in the Arctic in January, February, April, May, June, October, and November; and in the Antarctic in November and December.

For the Arctic, the year opened with daily sea ice extent at near record low levels. Sea ice extent in March tied with 2015 for the lowest maximum in the 37-year satellite period. Ice extent was as much as 500,000 square kilometers (193,000 square miles) below any previous year in the record through most of mid-May to early June. However, the pace of decline returned to near-average rates by July, and the end-of-summer minimum sea ice extent, recorded on September 10, eventually tied for second lowest with 2007 (2012 remains the lowest in the satellite time series by more than 600,000 square kilometers or 232,000 square miles).

That September 2016 did not see a new record low is likely due to the unusually stormy atmospheric pattern that set up over the Arctic Ocean in the summer. Storm after storm moved into the central Arctic Ocean, including a pair of very deep low pressure systems in late August. While a stormy pattern will tend to chew up the ice cover, it also spreads the ice out to cover a larger area and typically brings cloudy and, in summer, relatively cool conditions, inhibiting melt. Sometimes these deep lows act to reduce extent by mixing warm ocean waters upwards, but at present there is no compelling evidence that this occurred in 2016.

In October, a pattern of warm air intrusions from the North Atlantic began. This pattern combined with unusually high sea surface temperatures over the Barents and Kara Seas and helped to keep Arctic sea ice extent at low levels for November and December. In the middle of November there was even a several-day period when Arctic sea ice extent decreased. Unusually warm conditions and record low daily sea ice extent levels continued through the end of the year. The unusually high sea ice surface temperatures reflect a shift in ocean circulation, enhancing the import of warm, Atlantic-derived waters into the Arctic Ocean.

In the Southern Hemisphere, overall sea ice extent shifted from near-average over the first half of the year to sharply below average in mid-August. This initiated a period of near-record, and then extreme record low extents that persisted until late in the year. While the Antarctic seasonal sea ice minimum was unremarkable (slightly earlier, and slightly lower, than the 37-year average), the sea ice maximum occurred early (August 31), followed by a period of rapid ice extent decline. By November, extent was more than 2 million square kilometers (772,000 square miles) below the 1981 to 2010 average extent. In combination with the low Arctic sea ice extent for November, this produced a remarkably low global sea ice total.

The cause of the rapid drop in Antarctic sea ice in the second half of 2016 remains elusive. Significant changes in Southern Ocean wind patterns were observed in August, September, and November, but air temperatures and ocean conditions were not highly unusual.

Sea ice cover in Chukchi Sea depends on Bering Strait inflow  Serreze, M. C., et al. 2016. Journal of Geophysical Research | High-resolution image

Figure 5. This figure shows time series of the Julian dates of seasonal retreat and advance of sea ice in the Chukchi Sea. The trends in retreat and advance (show by the thin solid lines) are related to climate warming. The variations about the trends line are strongly related to variability in the Bering Strait heat inflow.

Credit: Serreze, M. C., et al. 2016. Journal of Geophysical Research

High-resolution image

A recent study by NSIDC scientists Mark Serreze, Julienne Stroeve, and Alexander Crawford, along with University of Washington scientist Rebecca Woodgate, demonstrates strong links between seasonal sea ice retreat and advance in the Chukchi Sea and the inflow of ocean heat into the region through the Bering Strait. The Chukchi Sea region is important as a focus for resource exploration, and vessels transiting the Arctic Ocean must inevitably pass through it. The Chukchi Sea is also part of the seasonal migration route for Bowhead whales that supports subsistence hunting by local indigenous communities.

Serreze and colleagues looked at time series of the date of retreat and advance in which linear trends related to general warming were removed. They found that 68 percent of the variance in the date that ice retreats from the continental shelf break in the Chukchi Sea in spring can be explained by fluctuations in the April through June Bering Strait oceanic heat inflow. The Bering Strait heat inflow data comes from a mooring located within the strait maintained by the University of Washington. They also found that 67 percent of the variance for the date at which ice advances back to the shelf break in autumn and winter can be related to the combined effects of the July through September Bering Strait inflow and the date of ice retreat. When seasonal ice retreat occurs early, low-albedo open water areas are exposed early, which gain a lot of energy from the sun. With more heat in the upper ocean, autumn ice growth is delayed. These relationships with the Bering Strait inflow and ocean heat uptake are superimposed upon the overall trends due to a warming climate. While these relationships lay a path forward to improving seasonal predictions of ice conditions in the region, developing an operational prediction scheme would require more timely acquisition of Bering Strait heat inflow data than is presently possible.

Global sea ice tracking far below average Figure 6. This time series of daily global sea ice extent (Arctic plus Antarctic) shows global extent tracking below the 1981 to 2010 average. The lower axis of the graph shows month of the year, ticked at the first day of the month

Figure 6a. This time series of daily global sea ice extent (Arctic plus Antarctic) shows global extent tracking below the 1981 to 2010 average. The X axis shows the month of the year, aligned with the first day of the month. Sea Ice Index data.

Credit: NSIDC
High-resolution image

 National Snow and Ice Data Center| High-resolution image

Figure 6b. This graph shows daily global sea ice difference from average, relative to the 1981 to 2010 reference period in square kilometers for the satellite record from 1979 through 2016

Credit: National Snow and Ice Data Center
High-resolution image

 National Snow and Ice Data Center| High-resolution image

Figure 6c. This graph shows daily sea ice difference from average in units of the standard deviation (based on 1981-2010 variation from the average) for this period.

Credit: National Snow and Ice Data Center
High-resolution image

Global sea ice (Arctic plus Antarctic) continues to track at record low levels in the satellite record, but the deviation from average has moderated compared to what was observed in November. This reflects a December pattern of faster-than-average growth in the Arctic, and slightly slower-than average sea ice extent decline in the Southern Ocean. The gap between the 1981 to 2010 average and the 2016 combined ice extent for December now stands at about 3.0 million square kilometers (1.16 million square miles), down from a peak difference of just over 4 million square kilometers (1.50 million square miles) in mid-November. This globally combined low ice extent is a result of largely separate processes in the two hemispheres.

Changes to our graphics for 2017  Figure 7. This comparison shows the changes that will be made to NSIDC time series graphs.

Figure 7. This comparison shows the changes that will be made to NSIDC time series graphs.

Credit: NSIDC
High-resolution image

NSIDC is transitioning the sea ice extent time series graphs to show interquartile and interdecile ranges, with the median extent value, in place of standard deviations and the average values. Standard deviations are most useful with data that are clustered towards the average, or “normally distributed” like a bell curve, with few outliers. Sea ice extent data, however, has become skewed due to the strong downward trend in ice extent, with a wider spread of values and more values falling at the low end of the range. Interquartile and interdecile ranges, along with the median value, are better for presenting data with these characteristics. The interquartile and interdecile ranges more clearly show how the data are distributed and can better distinguish outliers, and so provide a better view of the variability of the data.

Further reading

Serreze, M. C., A. Crawford, J. C. Stroeve, A. P. Barrett, and R. A. Woodgate. 2016. Variability, trends and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. Journal of Geophysical Research, 121, doi:10.1002/2016JC011977.

Categories: Climate Science News